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STUDYING QUANTUM PHASE-BASED ELECTRONIC DEVICES

ABSTRACT

This report summarizes work performed during the reporting period 01 October
1987 to 15 July 1988 under Contract #F49620-87-C-0055. Work was confined to
use of the moments of the density matrix, for examining transport in quantum
phase based devices. There are two significant features of the Approach: (1)
the introduction of Bohm's quantum potential, and (2) the use of moment
equations which are self-consistently coupled to Poissons equation. There
were a number of significant approximations made during this reporting period
that are currently being eliminated: (i) Only two of the minimum of three
moment equations have been implemented. (2) Boltzmann statistics was
invoked. The results show for a double barrier structure with 500 Angstrom
spacer-layers considerable structure in the charge distribution. At low
values of bias and corresponding low values of current there is a build up of
charge upstream of the first barrier. As well as tunneling into the well. At
a critical value of bias a local instability of current occurs and the
solutions shows a qualitative difference. Accumulation at the upstream
barrier is only marginally altered, and there is a significant charge buildup
in the well. The instability appears to be a precursor for this large charge
build up. Switching calculations were also performed and indicate switching
times of the order of 200 femoseconds.
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TRANSPORT IN QUANTUM PHASE BASED DEVICES

I. INTRODUCTION

Studies during this first reporting period was confined to Task III of AFOSR
Contract #F49620-87-C-0055. This task involves use of the density matrix, and
the moments thereof, for examining transport in quantum phase based devices.
There are two significant features of the approach taken at Scientific
Research Associates, Inc. (SRA):

(1)the introduction of Bohm's quantum potential into the transport
formulation, and

(2)the use of moment equations to self-consistently calculate current,
all of which are self-consistently coupled to Poissons equation.

Much of the work during this period was devoted to obtaining an understanding
of the Bohm quantum potential, which Bohm introduced and used to discuss
two-slit interference experiments. In the studies performed at SRA transport
was examined in only one dimension. Two dimensional transport is the object
of another task. Further there were a number of significant approximations
made during this reporting period that are currently being eliminated:
(1) During the present reporting period only two of the minimum of three
moment equations have been implemented. The quantum energy balance equation
has not been implemented in anything other than its classical form.
(2) Boltzmann statistics was invoked.

II. THE QUANTUM MECHANICAL TRANSPORT EQUATIONS

The transport equations used in the study are obtained under the assumption of
a displaced Fermi-Dirac density matrix operator, and include Poisson's
equation (expressed in terms of energy):

VE.VE(x) - e2( (n(x,t) -n(X) J (1)

In the above, n is the quantum mechanical ensemble averaged carrier density.
The next equation is the zeroth moment or equation of continuity:

an + V-nv = 0 (2)
t

where nv is the quantum mechanical ensemble averaged current density. The
third equation is the momentum balance equation and contains the minimum
quantum mechanical description of the problem:



a-n + V° -_n 2 V (nkBT G[(EF-Ec)/kBT) (3)
07t V Mv V( EC-Q) - Vm

+ t nv-v -2nkT G[(EF-Ec)/kBT] ) + nv

where

Ec (x,t) - E(x,t) - X(x) (4)

and X(x) is a position dependent electron affinity. There are two important
terms in equation (3). the first is the Bohm quantum potential (generalized
in include a position dependent effective mass):

h 2  a [ 1 an'/2 (5)

2n-72 ax m(x) ax

The second is the pressure gradient which we have expressed classically. The
pressure gradient represents the effect of mixed states. In equation (3) the
term G[(EF - Ec)/kBT] is given by the ratio of equilibrium Fermi-Dirac
integrals:

G[(EFEc)/kBT] = F3/2[(EFEc)/kBT] / FI/2[(EFEc)/kBT]  (6)

where

C(7)

2 f' x2 xdx
F (y) = -J l+exp[x-xF]

0
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is the Fermi-Dirac integral. Figure (1) is a plot of equation (6). Note, in
the limit of Boltzmann statistics, where the argument of the function is
negative, the function asymptotically approaches 3/2. In the extreme quantum
limit where the argument is positive the function asymptotically approaches

g[(EF-Ec)/kBT ] - 3 (EF-Ec)/kBT

Note, in equilibrium the carrier density is equal to:

(9)
n - NFl/2[(EF-Ec)/kBT ]

and N is the density of state of electrons:

(10)

N _ _L4 2l mkT 3/2 - 2.5x1019 t 3 / m3/
473(OO0J m cms

and mo is the free electron mass.

It is worthwhile noting that the use of the above equations does not represent
a radical departure from previous quantum mechanical approaches. For example
in the limiting situation of a pure state and a position independent effective
mass, equation (3) reduces to

any n (i
--t + V-nvv = - -m V(Ec(x)'Q)

while the equation of continuity retains its same form. The interpretation is
of course, different, with n now representing a probability density. A
discussion of equations similar to the above single particle equations is
contained in Kramer's Quantum Mechanics.

3
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III. DISCUSSION OF THE QUANTUM POTENTIAL

The simplest way to discuss the quantum potential is for steady state and for
pure states. In this case equation 9 reduces (in one dimension) to:

a [v2+2(Ec.Q)/ml - 0
ax

or

(13)
V

2 - 2(E-Ec+Q)/m

Where E is constant of integration. Now with Ec given by equation 4 a
simple barrier, with the vacuum as reference, is shown in figure 2. For
E--E o where X2>EO>xl, E-Ec<0 within the barrier and there is no

classical solution. Quantum mechanics teaches, however, that a finite and
real (albiet small) current will flow, with carriers tunneling through the
barrier. Thus, at the very least, for v = 0,

(14)
Q = Ec-E

This situation is illustrated in figure 4, which represent the first of a
sequence of calculations performed during the first reporting period. The
calculations were performed for the structure shown in figure 3. These
calculations were performed using Boltzmann statistics. Additionally in order
to reduce the influence of the pressure gradient calculations were performed
at 40 K. The physics at 40 K is not correctly managed by Boltzmann
statistics, and we are currently incorporating Fermi-statistics.

Figure 4 displays the charge density in the structure at a potential of 0.1 
volts on the anode boundary. Now in the aTence of any barrier and quantum
mechanical contributions transport in an N N structure indicates that
immediately downstream of the interface there is a region of electron
depletion followed by a region where the carrier density asymptotically
approaches the background doping level. The same situation occurs when the
double barrier is present. But at situations below resonance, where the
current level is near zero, there is very little charge in the well. Rather
there is strong accumulation of charge at the upstream portion of the first
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barrier followed by a rapidly decreasing charge distribution through the first
classically forbidden region. A narrow plateau region exists within the well
followed by a second rapidly decreasing charge distribution through the second
classically forbidden region. It is worthwhile noting that this distribution,
with the exception of the first region of charge accumulation is as discussed
by Ricco and Azbel.

Figure 4b displays the double barrier within the device, while figure 4c is a
sketch of the quantum potential. Of significance here is the fact that the
shape of the quantum potential appears to mimic that of the double barrier
under applied bias. The value of the quantum potential plus the self-
consistent potential much be sufficient large to permit a solution to occur.

IV BIAS DEPENDENT SOLUTIONS

Figure 5 displays the distribution of charge in the device as a function of
bias. Note that at low values of bias, between 0.1 and 0.4 the charge
distribution inside and outside the well behaves in a qualitatively similar
manner. There is a net buildup of charge in the well, and a corresponding
increase in the accumulation layer at the upstream portion of the double
barrier. At bias levels above 0.5 volts the upstream accumulation layer
appears to be unchanged and increases in bias are accompanied by increases
in charge between the N boundary and the double barrier. The charge in the
well, however, continues to increase. Please note that the charge decays
through the second barrier at a rate that appears to be independent of bias.

Figure 6 isplavs the spatipl dependence of the self consistent energy and the
quantum potential at biases ranging from 0.1 v to 0.8 v. There are several
points of note. First, at low values of bias the value of the quantum
potential between the barriers nearly tracks the value of the self-consistent
energy. At values of potential in excess of 0.4v where there is a qualitative
change in the bias dependence of the charge distribution the value of the
quantum potential between the barriers is relatively insensitive to changes in
bias. At this point we can only speculate as to the origin of this
phenomena: The quantum potential involves the ratio of the second derivative
of the square root of the charge density to the square root of the charge
density. Within the well this appears to be constant. Further, while we have
not calculated the zero bias energy level associated with this well, a quick
estimate indicates that this value is very near the energy level of the well.
More work needs to be done on this point.

There is another point to note. There is structure in the quantum potential
upstream of the double barriers. This occurs at the high bias levels and is a
consequence of the accumulation of charge upstream of the double barrier
structure.

V STRUCTURE OF THE TRANSITION REGION

The transition region occurs at the bias point of 0.5 v, and is accompanied by
a current oscillation with a period of approximately 5 fs as seen in figure
7. Th- oscillation is accompanied by carriers trying to move upstream of the
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first barrier. This is illustrated in figure 8, which shows a velocity
distribution superimposed upon the energy barriers. Note that at a reference
time of O.Ops the carriers have high velocities upstream of the barrier,
within the first barrier, and across the second barrier to the downstream
contact. Saturation in the velocity is a consequence of scattering that is
included in the calculation. The important point to note here is that at the
reference time of 0.8 ps, the carrier velocity in the first barrier has
changed sign and locally carriers are moving upstream. Figure 9 shows the
corresponding charge distribution as a function of time, over a select region
of the device.

Note that for this structure, and in the absence of energy balance and Fermi
statistics it was not anticipated that negative conductance would emerge. We
are currently incorporating both contributions.

VI. SWITCHING

One calculation was performed to determine the switching time associated with
the resonant tunnel structure, subject to the approximations herein. The
calculation was performed without inclusion of a position dependent effective
mass. (All of the above calculations included a position dependent effective
mass). The calculation is displayed in figure 10. It was estimated that a
switching time of 250fs occurred.

VII. PERSONNEL

During the course of this study, Dr. Harold L. Grubin. Dr. Marc Cahay, and Mr.
John P. Kreskovsky participated in the calculations. In addition, two
Associate Research Scientists, Mrs. Beverly Morrison and Mr. George Andrews
ran some of the calculations.

VIII. PRESENTATIONS

Discussions of these calculations was presented at the ARO Workshop in
Cambridge, Mass. (Fall 87), at the Arizona State University Workshop (1l
87), at the Radio Science Symposium (University of Colorado (January 88), and
at the ETDL Workshop on heterostructure devices (Jan 88).
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Figure 2. Schematic of a Single Barrier. For E 0 < X I

the Barrier is the Chemically Forbidden Region.
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Figure 4c. Quantum Potential.
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